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Abstract

Recent progress in genome-scale sequencing and comparative mapping raises new challenges
in studies of genome rearrangements. Although the pairwise genome rearrangement problem is
well-studied, algorithms for reconstructing rearrangement scenarios for multiple species are in
great need. The previous approaches to multiple genome rearrangement problem were largely
based on the breakpoint distance rather than on a more biologically accurate rearrangement (re-
versal) distance. Another shortcoming of the existing software tools is their inability to analyze
rearrangements (inversions, translocations, fusions, and fissions) of multichromosomal genomes.
This paper proposes a new multiple genome rearrangement algorithm that is based on the re-
arrangement (rather than breakpoint) distance and that is applicable to both unichromosomal
and multichromosomal genomes. We further apply this algorithm for genome-scale phylogenetic
tree reconstruction and deriving ancestral gene orders. In particular, our analysis suggests a
new improved rearrangement scenario for a very difficult Campanulaceae cpDNA dataset and a
putative rearrangement scenario for human, mouse and cat genomes.

1 Introduction

The traditional phylogenetic tree reconstruction is based on the analysis of individual genes (Graur
and Li, 2000 [12]). In contrast, genome rearrangement studies are based on genome-wide analysis of
gene orders rather than individual genes (Palmer and Herbon, 1988 [29], Palmer, 1992 [28], Sankoff
et al., 1992 [33], Olmstead et al., 1994 [27], Bafna and Pevzner, 1995 [1], Hannenhalli et al., 1995
[13], Blanchette et al., 1999 [5], Cosner et al., 2000 [10]). The study of genome rearrangements
started more than 60 years ago (Dobzhansky and Sturtevant, 1938 [11]), but interest on the subject
has flourished in recent years due to progress in large-scale sequencing and comparative mapping
(O’Brien et al., 1999 [26], Murphy et al., 2000 [23], Lander et al., 2001 [20], Venter et al., 2001
[35]).

In the context of genome rearrangements, genomes are typically viewed as signed permutations
where each integer corresponds to a unique gene/marker and the sign corresponds to its orientation
(strand). For unichromosomal genomes, the most common rearrangements are inversions that
are often referred to as reversals in bioinformatics. A reversal ρ(i, j), applied to a permutation
π = π1 . . . πi−1 πi . . . πj πj+1 . . . πn, reverses the segment πi . . . πj and produces the permutation
π · ρ(i, j) = π1 . . . πi−1 −πj −πj−1 . . . −πi πj+1 . . . πn. For example, the effect of the reversal ρ(4, 8)
on the identity permutation is the following:
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1 2 3 4 5 6 7 8 9 10
↓ ρ(4, 8) ↓

1 2 3 -8 -7 -6 -5 -4 9 10

Given two permutations π and γ, the reversal distance, d(π, γ), is defined as the minimum num-
ber of reversals required to convert one permutation into the other. The study of reversal distance
was pioneered David Sankoff (Sankoff, 1992 [31], Kececioglu and Sankoff, 1994 [19]) and increas-
ingly efficient polynomial-time algorithms have been developed to compute the reversal distance
(Hannenhalli and Pevzner, 1995 [14], Berman and Hannenhalli, 1996 [3], Kaplan et al., 1997 [18],
Moret et al., 2000 [22], Bergeron, 2001 [2]).

The Multiple Genome Rearrangement Problem is to find a phylogenetic tree describing the most
“plausible” rearrangement scenario for multiple species (Hannenhalli et al., 1995 [13], Sankoff et
al., 1996 [34]). Formally, given a set of m signed permutations (existing genomes) of order n, find
a tree T with the m permutations as leaf nodes and assign permutations (ancestral genomes) to
internal nodes such that D(T ) is minimized, where

D(T ) =
∑

(π,γ)∈T

d(π, γ)

is the sum of the reversal distances over all edges of the tree. The special case of three genomes
(m = 3) is called the Median Problem (Figure 6) .

Although the reversal distance for a pair of genomes can be computed in polynomial time
(Hannenhalli and Pevzner, 1999 [17]), its use in studies of multiple genome rearrangements was
somewhat limited since it was not clear how to combine pairwise rearrangement scenarios into
a multiple rearrangement scenario. In particular, Caprara, 1999 [8] demonstrated that even the
simplest version of the Multiple Genome Rearrangement Problem, the Median Problem, is NP-hard.
As a result this line of research was later abandoned in favor of the breakpoint analysis approach
and the existing tools use the so-called breakpoint distance (Watterson et al., 1982 [38], Nadeau
and Taylor, 1984 [25]) to derive the rearrangement scenarios. However, the breakpoint analysis
has some limitations in the analysis of pairwise genome rearrangements (Pevzner, 2000 [30]). One
of the reasons why the breakpoint distance dominated the analysis of multiple rearrangements in
the last few years is that it was not clear how to compute the plausible reversal-based evolutionary
scenarios. This paper uses the reversal distance for computing multiple rearrangement scenarios
and discusses some advantages of this approach over the breakpoint distance approach.

Our algorithm explores the specifics of the reversal distance and is based on the observation that
the reversal distance is a good approximation of the true distance for many biologically relevant
cases. Let γ be a genome that evolved from a genome π by k reversals (i.e., the true distance
between π and γ is k). We say that π and γ form a valid pair if d(π, γ) = k; otherwise we say that
d(π, γ) underestimates the true distance (Wang and Warnow, 2001 [36]). Typically two genomes
form a valid pair if the number of rearrangements between them is relatively small, exactly the
case in a number of genome rearrangement studies. Figure 1 illustrates that for a genome with
n = 100 markers the reversal distance approximates the true distance very well as long the number
of reversals remains below 0.4n. In many biologically relevant cases (e.g., rearrangements of the
X chromosome in mammalian species) the number of rearrangement events is well below 0.4n.
As a result, the reversal distance often corresponds to valid (or “almost valid”) pairs of genomes.
Therefore the genome-based evolutionary trees are often additive or “almost additive” (Buneman,
1971 [7]). This property allows one to design new genome rearrangement algorithms that explore
the specifics of additive trees.



Let π and γ be the leaves (existing genomes) in the evolutionary tree T and let
π = σ1, σ2, . . . , σk−1, σk = γ be a path between π and γ in T passing through the ancestral genomes
σ2, . . . , σk−1. Define

dT (π, γ) =
∑

1≤i≤k−1

d(σi, σi+1)

For a valid pair, dT (π, γ) = d(π, γ). We define the deficit of π and γ as
def(π, γ) = dT (π, γ) − d(π, γ). The deficit of the tree T is defined as def(T ) =

∑
def(π, γ) where

the sum is taken over all pairs of leaves. The closer the tree is to being additive, the smaller the
deficit of the tree will be. Many genome-based trees are “almost additive”, for example the herpes
virus tree from Hannenhalli et al., 1995 [13] has deficit 1, while the mtDNA tree from Sankoff
et al., 1996 [34] has deficit 3. Our algorithms are implicitly based on this observation and we
demonstrate below that they provide an accurate reconstruction of the ancestral genomes for trees
with small deficit. They use pairwise genomic distance software as a subroutine (implemented
by Glenn Tesler and available via the GRIMM web server at Pavel Pevzner’s laboratory web site
http://www-cse.ucsd.edu/groups/bioinformatics/software.html). The multiple genome re-
arrangement software described in this paper will be available from the same web server in the near
future.

The paper is organized as follows. In Section 2, we review previous work on the Multiple
Genome Rearrangement Problem. In Section 3, we describe a new algorithm to solve the Multiple
Genome Rearrangement Problem for unichromosomal genomes. Finally, in Section 4, we study
rearrangements of multichromosomal genomes.

2 Previous Work

Studies of the Multiple Genome Rearrangement Problem started from the special case of the Median
Problem. That is, given the gene order of three unichromosomal genomes G1, G2 and G3, find the
ancestral genome A which minimizes the total reversal distance d(A, G1)+d(A, G2)+d(A, G3). The
breakpoint analysis (Blanchette et al., 1997 [4] and Sankoff and Blanchette, 1997 [32]) attempts to
solve the median problem by minimizing the breakpoint distance instead of the reversal distance.
A pair of elements in permutations π and γ form a breakpoint if they are consecutive in one
permutation but non-consecutive in the other. The breakpoint distance between two permutations
is simply the number of breakpoints. Blanchette et al., 1997 [4] and Sankoff and Blanchette, 1997
[32] generalized this notion for the case of more than two genomes.

The drawback of breakpoint analysis is that the breakpoint distance, in contrast to the reversal
distance, does not correspond to a minimum number of rearrangement events. As a result, the
breakpoint median, recovered by breakpoint analysis, rarely corresponds to the ancestral median,
the genome that minimizes the overall number of rearrangements in the evolutionary scenario.
Our simulations demonstrate that in many cases the ancestral median correctly reconstructs the
ancestral genome. Another problem with breakpoint analysis is that it is not clear how to adapt it
to multichromosomal genomes.

To illustrate the drawbacks of the breakpoint analysis, consider the following simple example.
Suppose that the genomes G1, G2, and G3, evolved from the ancestral genome A = 1 2 3 4 5 6 by
one reversal each such that

G1 = 1 2 -4 -3 5 6
G2 = 1 -4 -3 -2 5 6
G3 = 1 2 3 4 -5 6 .



Searching for the breakpoint median will produce 4 optimal solutions: A, but also G1, G2, and G3.
If the median is A, then we have 2 breakpoints on each edge of the tree for a total of 6. But if
the median is any of the 3 genomes, we also get a total of 6 = 0+3+3 breakpoints. Hence, in this
simple case, the breakpoint median fails to unambiguously identify the ancestor. Conversely, the
only solution for the ancestral median is A since it is the only permutation generating a tree with
a total score of 3 reversals.

This paper studies the ancestral median problem since it appears to be more biologically accu-
rate than the breakpoint median. Initial attempts to recover the ancestral median were made by
Hannenhalli et al., 1995 [13] and Sankoff et al., 1996 [34] who came up with approaches that may
work well for 3 close genomes. However, it is not clear how to generalize their approaches for more
than three genomes. In particular, Hannenhalli et al., 1995 [13] were successful in reconstructing a
genome rearrangement scenario for 3 herpesviruses but failed to resolve a very complicated dataset
of 13 Campanulaceae cpDNAs with 105 markers (the comparative maps were constructed by Mary
Beth Cosner and colleagues in early 90s). The variety of rearrangements in these flowering plants
far exceeds that reported in any group of land plants thus making this dataset a challenging problem
for any genome rearrangement study.

The first relatively large dataset of rearranged genomes was studied by Blanchette et al., 1999
[5] who used BPAnalysis, the original implementation of breakpoint analysis [4], to analyze 11
metazoan mtDNA with 35 markers. As for the Campanulaceae problem, it remained unsolved for
almost ten years until Cosner et al., 2000 [9], [10] improved on BPAnalysis and constructed a
rearrangement scenario with 67 reversals. Recently, Moret et al., 2001 [22] developed the software
GRAPPA which further improved on BPAnalysis. Finally, in a recent breakthrough, Moret et al.,
2001 [21] described a million-fold speedup over GRAPPA and re-evaluated the Campanulaceae rear-
rangement scenario. Their analysis returned 216 trees with reversal distance 67 as compared to
only 4 such trees in the previous analysis. Our MGR algorithm described below improves on this
recent result by generating a rearrangement scenario with only 65 reversals that was overlooked by
Moret et al., 2001 [21].

3 Multiple Genome Rearrangement Problem

3.1 Algorithm

We first explain the idea of our algorithm for the case of 3 genomes. Our algorithm evaluates
all possible reversals for each of the 3 genomes, identifying good reversals. Intuitively, a reversal
is good if it brings a genome closer to the ancestral genome. Of course, the ancestral genome is
unknown and therefore it is unclear how to find good reversals. However, we argue (and confirm
by simulations) that the reversals which bring G1 closer to both G2 and G3 are likely to be good
reversals. If this is correct, then we don’t need the ancestral genome to find good reversals. We
then carry on good reversals in the genomes G1, G2, and G3 in the hope that they will bring
us closer to the ancestor, and iterate until the genomes G1, G2 and G3 are transformed into an
identical genome (converge to the ancestor A). Ideally, at this point, we have reached the most
likely ancestral median. Of course, this approach works well only for “almost additive” trees with
small deficit and we argue that it is the case for many biologically interesting samples.

A good reversal ρ in genome G1 is a reversal that reduces the reversal distance between G1

and G2 and the reversal distance between G1 and G3. Define ∆(ρ) as the overall reduction in the
reversal distances:

∆(ρ) = (d(G1, G2) + d(G1, G3)) − (d(G1 · ρ, G2) + d(G1 · ρ, G3))



The reversal ρ is good if ∆(ρ) = 2. Good reversals in genomes G2 and G3 are defined similarly.
The idea of our algorithm is embarrassingly simple: look for good reversals in G1, G2, and G3

and perform them (if there are any) until each of the genomes is turned into the same ancestral
genome. In many cases (in particular for additive trees) good reversals are sufficient to bring all
three genomes to the ancestor. We call an instance of the median problem that can be resolved
using only good reversals a perfect triple. If we run out of good reversals before the three genomes
converge to the ancestor, we relax our definition of good reversals.

This approach leaves room for some flexibility. Often there is a variety of good reversals and
it is not clear which one to choose. For example, the list of good reversals often contains non-
overlapping reversals ρ(i1, j1) and ρ(i2, j2) with i1 ≤ j1 < i2 ≤ j2 and the order in which these
reversals are performed is often irrelevant. Our objective is to choose good reversals in such a way
that we don’t run out of good reversals until all three genomes converge to the ancestor. One way
to address this problem is to test all pairs/triples/... of reversals in order to avoid reversals that
would cause us to run out of good reversals in a few steps. We also use a heuristic to choose the
best reversal from the list of good reversals. The heuristic is based on an observation that good
reversals, if carried out in the correct order, should not affect most of the other good reversals that
are available. Hence, for each good reversal ρ, we compute nρ, the number of good reversals that
will be available if ρ is carried out. The heuristic picks the good reversal ρ with the maximal nρ as
the best reversal, the reversal to be carried out. We implemented these procedures in a program
called MGR-MEDIAN and it turned out to work well in practice.

In some cases, no good reversal will be available, i.e. ∆(ρ) < 2 for all reversals ρ in each of the
three genomes. In those situations, the best reversal will be the result of a depth k search minimizing
the total pairwise reversal distances. Suppose we have a sequence of k reversals ρ1, ρ2 . . . ρk to be
applied to G1. Define

∆(ρ1, ρ2, . . . , ρk) = d(G1, G2) + d(G1, G3) −
(d(G1 · ρ1 · · · ρk, G2) + d(G1 · ρ1 · · · ρk, G3)) .

Let
∆ = max

ρ1,...,ρk
∆(ρ1, ρ2, . . . , ρk)

and ρ̂1, . . . , ρ̂k be a sequence of reversals achieving this maximum. ∆ then corresponds to the
maximal reduction in the reversal distance after the depth k search. The best reversal in G1 will
be the first reversal of the sequence, i.e. ρ̂1 (the best reversals in G2 and G3 are defined similarly).
When no good reversal is available, the reversal that will be carried out by MGR-MEDIAN will be the
result of this search.

The depth k search should be taken with caution when one of the genomes is already within
distance less than k from the ancestor. In this case we consider k reversals ρ1, ρ2, . . . , ρk, where
the first x reversals are applied to G1, the next y reversals are applied to G2, and the remaining
k − x − y reversals are applied to G3, and maximize the function

∆(ρ1, ρ2, . . . , ρk) = d(G1, G2) + d(G1, G3) + d(G2, G3)
−d(G1 · ρ1 · · · ρx, G2 · ρx+1 · · · ρx+y)
−d(G1 · ρ1 · · · ρx, G3 · ρx+y+1 · · · ρk)
−d(G2 · ρx+1 · · · ρx+y, G3 · ρx+y+1 · · · ρk) .

Now consider the case of m > 3 genomes G1, G2, . . . , Gm. We generalize the previous definition
of good reversal in Gi to be any reversal that reduces the reversal distance from Gi to all other



genomes. We define ∆(ρ) once again as the reduction in the reversal distances:

∆(ρ) =
∑
j 6=i

d(Gi, Gj) −
∑
j 6=i

d(Gi · ρ, Gj)

A good reversal ρ in genome Gi is now a reversal with ∆(ρ) = m− 1. We iteratively carry on good
reversals until any two of m genomes become identical. When we reach that point, we remove one
of the two genomes and start the procedure again with m−1 genomes. We keep removing genomes
until we are back to solving the median problem.

In many cases, especially when m is large, we will run out of good reversals before converging to
the ancestral genome. In such cases, we have developed a heuristic to complete the recovery of the
phylogeny. The heuristic relies on the MGR-MEDIAN program for 3 genomes described in the previous
section. Starting from the 3 closest genomes (in terms of the reversal distance), it iteratively adds
one more genome to reconstruct the full phylogeny. Whenever possible, we choose the genome that
is the “closest” to the partially reconstructed tree and such that it also forms a perfect triple with
the two endpoints of one of the edges in the tree. We seek the closest genomes first because, as
we will see in Section 3.2, the closer the genomes, the more accurate the ancestor produced by
MGR-MEDIAN.

Assume that genomes G1, G2, . . . , Gl are already included in the tree T that corresponds to
the partially reconstructed phylogeny. The problem of adding genome Gl+1 to T corresponds to
identifying the edge of T that should be split by the edge leading to Gl+1. We call that edge the
split edge. The heuristic once again uses a simple greedy approach to find the split edge. For each
edge (u, v) in T , compute M = M(u, v, Gl+1) the median of u, v, and Gl+1. The cost of adding
Gl+1 to this edge, C(u, v), is the total reversal score of the median less the reversal distance between
u and v (the score of the edge being removed). Formally,

C(u, v) = d(u, M) + d(v, M) + d(Gl+1, M) − d(u, v)

The split edge on which to add Gl+1 is then the one with the smallest cost. Putting all these steps
together, we get the algorithm MGR.

The described algorithms rely on our ability to find good reversals. Instead of computing ∆(ρ)
for all possible reversals while looking for good reversals, we have implemented a speedup making
the algorithms more computationally efficient. The speedup makes use of the concept of conserved
adjacency. We call an ordered pair of markers, (x, y), a conserved adjacency if (x, y) or its inverse
(−y,−x) is present in all genomes as consecutive elements. When looking for good reversals, we
only consider reversals that do not break any conserved adjacency. The justification behind this
shortcut comes from a result of Hannenhalli and Pevzner, 1996 [16] and a theorem recently proved
by Glenn Tesler (personal communication).

3.2 Tests

3.2.1 Simulated data

We compared our MGR algorithm to the two implementation of breakpoint analysis:
BPAnalysis [4] and GRAPPA [22]. Our initial tests showed that these two programs were pro-
ducing nearly identical results, and so we decided only to include results from GRAPPA since it was
a more efficient implementation. When testing the algorithm, we are interested not only in the
phylogeny that we recover but also in the correct labeling of the internal (ancestral) nodes.

We used the following simulated data for benchmarking. Starting from the identity permutation
A with n genes/markers, we performed k reversals to get genome G1, k to get G2 and k to get



G3. We used the resulting 3 permutations as the input to MGR-MEDIAN and GRAPPA and checked
whether they reconstructed the ancestral identity permutation.

Figures 2a,b show the difference between the total reversal distance D(T ) of the tree recovered
by the algorithm and the actual number of reversals (equal to 3k). Figures 2c,d show the reversal
distance between the ancestral permutation recovered by the algorithm and the actual ancestor,
the identity permutation. The tests are conducted for various ratios r = #reversals/#markers.

Both GRAPPA and MGR-MEDIAN produce very similar solutions for r < 0.20. But as the ratio r
increases, GRAPPA starts making errors. In contrast, MGR-MEDIAN persists in finding correct solutions
and in some cases find solutions that even have fewer reversals, than the actual ancestor. The issue
here is that as the ratio r increases, the assumption that the ancestor corresponds to the most
parsimonious scenario sometimes fails. In Figures 2c,d we see that as the ratio r increases, both
algorithms start having difficulty recovering the actual ancestor, with the solution produced by
GRAPPA further away on average than the ancestor produced by MGR-MEDIAN.

Figure 3 presents the results of similar experiments with nonequidistant genomes starting from
the identity permutation A and performing k, k and 2k random reversals to obtain G1, G2 and G3.
Once again, GRAPPA starts failing to recover the optimal solution at r > 0.20, while MGR-MEDIAN
keeps finding the true ancestor.

We tested the performance of MGR for four and more genomes using a similar setup. First, we
considered a small tree with 4 genomes as leaves and 2 internal (ancestral) nodes. For simplicity,
we picked one of the ancestral nodes to be the identity permutation. We then randomly simulated
k reversals on each branch of the tree. We used the resulting 4 leaves of the tree as the input for MGR
and GRAPPA and calculated the difference between the total reversal distance of the tree recovered
with the actual number of performed reversals equal to 5k (Figure 4a,b). We also calculated how
close the solutions recovered would get of the true ancestral permutation (the identity permutation).
Since in each solution there are two internal nodes, we picked the one that is closer to the identity
and recorded the reversal distance between it and the identity permutation (Figure 4c,d).

Finally, to see the effect of adding more genomes, we constructed larger complete unrooted
binary trees and simulated k random reversals on each branch. To obtain a sample input with m
genomes that we would feed into MGR and GRAPPA, we simulated the smallest complete binary tree
such that the number of leaves was larger than m and randomly removed the extra leaves. The
results in Figure 5 show the difference between the total reversal distance of the tree recovered
and the total reversal distance of the simulated tree. Note that it is difficult to use the ratio
r = #reversals/#markers here as it changes depending on the size of the tree. For example, when
k = 1, if m is 4 then r = 5/30 ≈ 0.167, but if m is 8 then r = 13/30 ≈ 0.433 and if m is 16 then
r = 27/30 = 0.9. Unfortunately, running GRAPPA on more than 10 genomes genomes turned out to
be impossible on our workstations, as the tree space was too large. The only way to get around
this problem would have been to suggest a tree topology to GRAPPA (which is exactly what we are
trying to recover in the first place). However, even if we did suggest the actual tree topology to
GRAPPA, we would still get an average score difference of 7.3 for n = 30 and of 19.1 for n = 100.

3.2.2 Herpesvirus data

Hannenhalli et al., 1995 [13] used herpesvirus gene orders as a test case for one of the first studies on
the Multiple Genome Rearrangement Problem. They developed a rather elaborate method to solve
a relatively simple instance of the median problem for Herpes simplex virus (HSV ), Epstein-Barr
virus (EBV ) and Cytomegalovirus (CMV ) (Figure 6a). As the authors themselves pointed out,
the method used would not be applicable to more complex problems and new algorithms would be
required. The optimal solutions recovered involved 7 reversals. The ratio #reversals/#markers in



this example is: r = 7/25 = 0.28. Our simulations indicate that MGR-MEDIAN typically reconstructs
the correct scenario with such ratios while GRAPPA typically fails for r > 0.2.

We tested both MGR-MEDIAN and GRAPPA on these 3 herpesviruses to see whether they would
recover the ancestral genome suggested by [13]. MGR-MEDIAN found this genome and reconstructed
the rearrangement scenario with 7 reversals (Figure 6b) even though it did not correspond to a
perfect triple. In contrast, GRAPPA returned a suboptimal solution with 8 reversals. Actually,
the ancestor suggested by GRAPPA was the genome HSV itself, indicating the problem with the
breakpoint distance described in Section 2.

3.2.3 Human, fruit fly, and sea urchin mtDNA data

Sankoff et al., 1996 [34] analyzed human, sea urchin, and fruit fly mtDNA to derive the ancestral
gene order. Using MGR-MEDIAN, we found the ancestral gene order A with a total reversal distance
of 39 (Figure 7). The solution is different from the ones found in [34] but the total reversal distance
is the same. The ratio #reversals/#markers for this data set is r = 39/33 ≈ 1.18, an indication
of a difficult problem. Running GRAPPA on these genomes, we obtained a solution that has a total
reversal distance of 43.

3.2.4 Metazoan mtDNA data

Blanchette et al., 1999 [5] used BPAnalysis in the rearrangement study of 11 metazoan mtDNAs.
The genomes come from 6 major metazoan groupings: nematodes (NEM), annelids (ANN), mol-
lusks (MOL), arthropods (ART), echinoderms (ECH), and chordates (CHO). They were originally
selected in [5] to provide the analysis with exemplar of the most diverse members of each group.
The two “optimal” phylogenies recovered in [5] had 199 breakpoints.

We studied the same dataset with MGR and GRAPPA and used the curated gene order data of the 11
genomes from the MGA Source Guide compiled by Jeffrey L. Boore
http://www.jgi.doe.gov/programs/comparative/MGA Source Guide.html. After removing two
genes that were not shared by all mtDNAs we were left with a common set of 36 genes. MGR re-
covered a phylogeny with 150 reversals (Figure 8). The tree space for 11 genomes is very large and
searching it exhaustively with GRAPPA is very time consuming. After 48 hours on a workstation,
GRAPPA had recovered 3 “optimal” trees with 175 reversals and 200 breakpoints. Even suggesting
the topology found by MGR to GRAPPA would only produce a fourth tree with 175 reversals.

The tree recovered by MGR is closely related to one of the optimal trees in Blanchette et al.,
1999 [5]. The weak association of Katharina tunicata with the mollusks was already discussed in
[5]. Apart from this and from the weak grouping of the two arthropods, the induced phylogeny
also agrees with the metazoan phylogeny proposed by Boore and Brown, 2000 [6] (the nemathodes
and the echinoderms were not discussed in this paper). We remark that Blanchette et al., 1999
[5] obtained their tree in a semi-automated regime by making a selection between the potential
phylogenies and disregarding the ones breaking any one of the 6 metazoan groupings. Although
such assumptions about the data were not included in MGR, it did not prevent it from the discovery
of a very similar tree in a fully automated fashion (Figure 8). Rooted differently, we see that the
nemathodes are a late-branching sister taxon of the annelids which is the same as in [5]. The
deuterostomes (chordate and echinoderm) association was successfully identified both in [5] and in
the tree from MGR but not in any of the first 3 trees produced by GRAPPA (excluding the one we
suggested as a constraint).



3.2.5 Campanulaceae cpDNA data

We analyzed the Campanulaceae chloroplast dataset with 13 cpDNAs and 105 markers. It is one
of the most challenging genome rearrangement datasets studied by Cosner et al, 2000 [9], [10]
and Moret et al., 2001 [21]. The tree space for 13 genomes is too large and cannot be searched
exhaustively by GRAPPA. To analyze the tree space in this case [9], [10], [21] described various
techniques to obtain constraint trees to suggest to the program. GRAPPA then searched the space
of refinements of these constraint trees trying to minimize the total number of reversals. Moret et
al., 2001 [21] recovered 216 trees with a total of 67 reversals. GRAPPA was not able to decide which
of those trees corresponds to the most likely reconstruction of the rearrangement scenario.

Running MGR on the same data set did not require the preprocessing of a constraint tree and
recovered a tree with only 65 reversals, shown in Figure 9. The topology of the tree recovered
actually corresponds to the topology of one of the trees recovered by GRAPPA, but the labeling of
the internal nodes differs. Since our tree minimizes the number of reversals we argue that MGR
provided a better reconstruction of the rearrangement scenario than GRAPPA.

4 Reconstructing Ancestral Gene Orders for Multichromosomal
Genomes

4.1 Algorithm

Consider three multichromosomal genomes G1, G2 and G3. The median problem is to find the
ancestral genome A which minimizes the total genomic distance d(A, G1) + d(A, G2) + d(A, G3).
The genomic distance in this case is defined in terms of reversals, translocations, fusions, and
fissions, the most most common rearrangement events in multichromosomal genomes (Pevzner,
2000 [30]).

Let π = π1 . . . πn be a chromosome in a multichromosomal genome and 1 ≤ i ≤ j ≤ n. A
reversal ρ(π, i, j) rearranges the genes inside π and transforms it into π1 . . . πi−1 −πj −πj−1 . . .−πi

πj+1 . . . πn. Let π = π1 . . . πn and σ = σ1 . . . σm be two different chromosomes and 1 ≤ i ≤ n + 1
and 1 ≤ j ≤ m + 1. A translocation ρ(π, σ, i, j) exchanges genes between chromosomes π and
σ and transforms them into chromosomes π1 . . . πi−1σj . . . σm and σ1 . . . σj−1πi . . . πn. A fusion
concatenates the chromosomes π and σ, resulting in a chromosome π1 . . . πnσ1 . . . σm. A fission
“breaks” a chromosome π into two chromosomes π1 . . . πi−1 and πi . . . πn.

Given two genomes Π and Γ, the genomic distance, d(Π, Γ), is defined as the minimum number
of reversals, translocations, fusions and fissions required to convert one genome into the other.
The genomic distance was first studied by Hannenhalli and Pevzner, 1995 [15] who developed a
polynomial-time algorithm to compute a rearrangement scenario between man and mouse involving
131 rearrangements.

MGR-MC algorithm is a generalization of the MGR-MEDIAN algorithm for unichromosomal genomes.
First, we evaluate all possible rearrangements (reversals, translocations, fusions, and fissions) for
each of the 3 genomes, identifying good rearrangements. As in Section 3.1, a rearrangement is
good if it brings a genome closer to the ancestral genome. We will argue once again that the
rearrangements which bring G1 closer to both G2 and G3 are likely to be good. We iteratively carry
on these good rearrangements until the genomes G1, G2 and G3 are transformed into an identical
genome hoping that we have reached the most likely ancestral median.

Since we are dealing with multichromosomal genomes and with four different types of rearrange-
ments, we need to be aware of an ambiguous situation that can occur when solving the median
problem. Consider the following simple example:



G1 = 1 2 3 4 5 G2 = 1 2 -5 -4 -3 G3 = 1 2
3 4 5

In this example, the parsimony principle does not allow one to unambiguously reconstruct the
evolutionary scenario. If the ancestor coincides with G1 then a reversal occurred on the way to G2

and a fission occurred on the way to G3. But we could also have a similar scenario starting from
G2 as the ancestor or even starting from G3 if we assume that 2 fusions occurred. In this example,
d(G1, G2) = d(G1, G3) = d(G2, G3) = 1. We did not have this kind of ambiguity for unichromoso-
mal genomes because it was impossible to find 3 genomes that would all be within 1 reversal of the
each other. These ambiguities motivate a more careful selection within the good rearrangements.
We use the observation that in most genomes of interest (e.g. mammalian genomes) reversals and
translocations are more common than fusions and fissions. When looking for the best rearrangement
to be carried out within the good rearrangements, we always select reversals/translocations before
fusions/fissions. If we run out of good reversals before reaching a solution, the best rearrange-
ment will be the result of a depth k search minimizing the total pairwise rearrangement distances.
Putting all these steps together we get the MGR-MC algorithm for multichromosomal genomes that
is easy to generalize for more than 3 multichromosomal genomes.

4.2 Tests

4.2.1 Simulated data

We used the following simulations to test the performance of MGR-MC. Starting from the identity
permutation A of size n, we first randomly selected b chromosome breaks to simulate a multichro-
mosomal ancestor. Next, to transform A into Gi (1 ≤ i ≤ 3), we performed k rearrangements where
each rearrangement was randomly assigned to be a reversal/translocation with probability p and a
fusion/fission with probability 1− p. We used the resulting 3 genomes as the input for MGR-MC. We
are interested in the difference between the score (total number of rearrangements) of the solution
recovered by the algorithm and the actual score of the simulated tree (equal to 3k). We are also
interested in the rearrangement distance between the ancestral genome recovered by the algorithm
and the actual ancestor. The tests are conducted for various ratios r = #rearrangements/#markers.

Figure 10 illustrates that MGR-MC has no difficulty recovering ancestral genomes with a score
which is at least as good as the one of the actual ancestor. Actually, in all the tests conducted, not
once was the solution produced by MGR-MC worst than the true ancestor. The solutions produced
for small ratios r = #rearrangements/#markers tend to be very close the actual ancestor. But, as
the ratio r increases, we see the same effect as for unichromosomal genomes: MGR-MC starts finding
solutions with genomic distance which is smaller than the true number of rearrangement events.
As a result, the average distance between the solution recovered and the true ancestor increases.
The comparison of Figures 10a,b and 10c,d illustrates that accuracy of reconstructions deteriorates
with the increase in the rate of fusions/fissions.

4.2.2 Gene order of the human-cat-mouse common ancestor

The modern comparative mapping studies generated a wealth of data on differences in genomic
organization for many mammalian species. However, most existing comparative maps are pairwise
maps representing genome organization of two species rather than multiple maps representing the
genomic organization for more than two species. Since the number of established universal markers
(O’Brien et al., 1999 [26]) that work across many genomes is relatively small, it is often not clear
how to integrate pairwise comparative maps into multiple maps. The first sufficiently detailed



triple comparative maps appeared recently as the results of rat (Watanabe et al, 1999 [37]) and
cat (Murphy et al., 2000 [24]) comparative mapping projects. We collaborated with Bill Murphy
to integrate the pairwise human-mouse, human-cat, and mouse-cat comparative maps into a triple
human-mouse-cat map and we use this map for deriving the ancestral genome organization.

The previous attempts to derive rearrangement history of multi-chromosomal genomes concen-
trated on human and mouse genomes (Nadeau and Taylor, 1984 [25], Hannenhalli and Pevzner,
1995 [15]). The cat data used in this paper comes from Murphy et al., 2000 [24] and consists of 193
markers shared by all three species. The number of markers is still too small to derive a detailed
rearrangement scenario but it allows one to get some insights into a large-scale organization of the
ancestor. Ultimately, this organization may be refined with MGR-MC as soon as more markers shared
by all three species become available.

Comparative maps usually correspond to unsigned permutations, i.e., no information on the
direction (signs) of the genes/markers is available. Since mammalian comparative maps contain
many singletons (Pevzner, 2000 [30]) the existing algorithms for analyzing unsigned permutations
become too time-consuming in this case. As a result we have to assign an orientation to the
markers, since the current implementation of MGR-MC only supports signed permutations/genomes.
Ultimately, this should not be a problem as more data becomes available. We used strips in
unsigned permutations (Hannenhalli and Pevzner, 1996 [16]) to infer the signed permutations from
the original unsigned permutations. Using human genome as a reference, we first identified all the
strips both in cat and in mouse genomes. We then assigned an orientation to the markers based
on these strips. Any marker for which we could not assign an orientation using this method either
in cat or in mouse genome was removed and we were left with a common set of 114 markers. This
process obviously inserts a bias towards blocks of preserved markers, while removing information
about more local disruptions, e.g., single marker reversals. The resulting ancestral gene order
generated by MGR-MC is shown in Figure 11. Although most of the elements of the ancestral
organization in Figure 11 are consistent with the existing biological conjectures, the organization
of ancestral chromosomes 4 and 17 is surprising and even counterintuitive. According to our
scenario the chromosomes 4 and 17 in the ancestor were combined into the chromosome 5 in
human and the chromosome A1 in cat. We do not argue that it is a correct reconstruction of the
ancestral chromosomes 4 and 17 (more markers are needed to support this conjecture) but remark
instead that MGR-MC provided us with solid combinatorial reasons why such scenario makes sense.
Such reasons are not straightforward and hard to explain without the multichromosomal genome
rearrangement software that never was available to evolutionary biologists in the past. Therefore,
the non-trivial combinatorial arguments used by MGR-MC in the construction of Figure 11 may escape
the attention of biologists that studied this problem in the past. The detailed biological analysis
of our human-mouse-cat ancestral reconstruction will be discussed in another paper (joint project
with Bill Murphy).
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Figure 1: Reversal distance, d(π, γ), versus actual number of reversals performed to transform π into γ, where γ

is a genome/permutation that evolved from the identity permutation π = 1, 2, . . . , 100 by k random reversals. The

simulations were repeated 10 times for every k. We compute the average difference between the reversal distance and

the actual number of reversals performed k.
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(b)  Median Problem with 100 markers
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(d)  Median Problem with 100 markers
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Figure 2: Comparison of MGR-MEDIAN and GRAPPA (3 genomes equidistant from the ancestor). The genomes

G1, G2, G3 are obtained by k reversals each from the ancestral identity permutation 1 2 . . . n (n = 30 and n = 100).

The simulations were repeated 10 times for every ratio #reversals/#markers = 3k/n. (a) and (b) The average dif-

ference between the number of reversals on the tree recovered by the algorithm and the number of reversals on the

actual tree (equal to 3k). (c) and (d) The average reversal distance between the solution recovered and the actual

ancestor.
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(a)  Assymetric Median with 30 markers
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(c)  Assymetric Median with 30 markers
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(b)  Assymetric Median with 100 markers
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(d)  Assymetric Median with 100 markers
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Figure 3: Comparison of MGR-MEDIAN and GRAPPA (3 genomes nonequidistant from the ancestor). The genomes

G1, G2, G3 are obtained by k, k and 2k reversals respectively each from the ancestral identity permutation 1 2 . . . n

(n = 30 and n = 100). The simulations were repeated 10 times for every ratio #reversals/#markers = 4k/n. (a) and

(b) The average difference between the number of reversals on the tree recovered by the algorithm and the number of

reversals on the actual tree (equal to 4k). (c) and (d) The average reversal distance between the solution recovered

and the actual ancestor.
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(c)  4 genomes with 30 markers
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(b)  4 genomes with 100 markers
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Figure 4: Comparison of MGR and GRAPPA (4 genomes). We start from an unrooted tree with 4 leaves and select

one of the two internal nodes to be the identity permutation 1 2 . . . n (n = 30 and n = 100). We then perform k

reversals on each branch of the tree to obtain the genomes G1, G2, G3, G4 as the 4 leaves of the tree. The simulations

were repeated 10 times for every ratio #reversals/#markers = 5k/n. (a) and (b) The average difference between the

number of reversals on the tree recovered by the algorithm and the number of reversals on the actual tree (equal to

5k). (c) and (d) The average reversal distance between the best (i.e., closest) internal node in the solution recovered

and the identity permutation.
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(a)  30 markers and k=2 reversals per branch
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Figure 5: Comparison of MGR and GRAPPA (m genomes each with 30 markers). The genomes G1, G2, . . . , Gm

correspond to a subset of leaves from a complete unrooted binary tree on which we have performed k reversals on

each branch. The simulations were repeated 10 times for every m. (a) and (b) The average difference between the

number of reversals on the tree recovered by the algorithm and the number of reversals on the actual tree when k = 2

and k = 3.
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Figure 6: Herpes simplex virus (HSV ), Epstein-Barr virus (EBV ) and Cytomegalovirus (CMV ) gene orders

(Hannenhalli et al., 1995 [13]) as well as the ancestral gene order (A) and optimal evolutionary scenario recovered by

MGR-MEDIAN.

Human: 26 13 17 12 -24 15 18 32 -2 -16 -3 -33 4 -28 7 5 1 10 19 25 22 11 29 14 20 -21 -8 6 30 -23 9 27 31
Sea urchin: 26 4 25 22 5 1 -28 19 11 29 20 -21 6 9 27 8 30 23 -24 16 14 -2 32 3 -31 15 -7 33 10 13 17 12 18
Fruit fly: -26 -31 -27 12 -24 15 18 32 -3 -33 4 13 5 7 1 10 19 2 25 16 29 8 -9 -20 -11 -22 30 -23 21 6 28 -17 -14
A: 26 13 17 12 -24 15 18 32 -28 7 -6 21 -20 -29 -11 -22 -25 -16 8 -3 -33 4 14 -2 -19 -10 -1 -5 30 -23 9 27 31

Figure 7: Human, sea urchin and fruit fly mitochondrial gene order taken from Sankoff et al., 1996 [34]. A is the

ancestral gene order suggested by MGR-MEDIAN.
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Figure 8: Phylogeny of 11 metazoan genomes reconstructed by MGR. The gene order data is taken from the MGA

Source Guide which is compiled by Jeffrey L. Boore. The genomes come from 6 major metazoan groupings: nematodes

(NEM), annelids (ANN), mollusks (MOL), arthropods (ART), echinoderms (ECH), and chordates (CHO). Numbers

on the edges show the number of reversals.

Figure 9: Phylogeny of the Campanulaceae cpDNA dataset as reconstructed by MGR. Numbers on the edges show

the number of reversals.
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Figure 10: Performance of MGR-MC (3 multichromosomal genomes equidistant from the ancestor). The ancestral

genomes are obtained from the identity permutation 1 2 . . . n (n = 30 and n = 100) by inserting b chromosomes

breaks (b = 2 when n = 30 and b = 9 when n = 100). The genomes G1, G2, G3 are obtained by k rearrangements each

from the ancestral genomes. Each rearrangement is a reversal/translocation with probability p and a fusion/fission

with probability 1 − p. The simulations were repeated 10 times for every ratio #rearrangements/#markers = 3k/n.

We compute the average score difference which is the difference between the number of rearrangements on the tree

recovered by the algorithm and the actual number of rearrangements (equal to 3k). We also compute the average

distance of solution between the solution recovered and the actual ancestor.
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Figure 11: Ancestral median for human, mouse, and cat genomes found by MGR-MC. We used the gene order of 114 markers

spread over the chromosomes in all three species. The numbers above the chromosomes correspond to these 114 markers and

the numbering is such that the human genome corresponds to the identity permutation broken in 20 pieces. The names below

the chromosomes correspond to the name of the markers. We attribute a color to each human chromosome. The color of

any marker (in any genome) indicates on which human chromosome is the homolog of this marker. Each marker segment is

traversed by a diagonal line. These diagonal lines are such that the human chromosomes are traversed from top left to bottom

right and are design to provide visual help to identify where rearrangements occurred. For example, for chromosome X, the

gene order of the ancestor coincides with the cat gene order and only differs by one segment consisting of genes 108 and 109

(break in the diagonal line) from the human gene order. The mouse X chromosome is broken into 7 segments as compared to

the ancestor (shown by 7 broken segments of the diagonal line).


